Modeling the Cut-off Frequency of Acoustic Signal with an Adaptative Neuro-Fuzzy Inference System (ANFIS)

نویسنده

  • Y. Nahraoui
چکیده

An Adaptative Neuro-Fuzzy Inference System (ANFIS), new flexible tool, is applied to predict the cut-off frequencies of the symmetric and the anti-symmetric circumferential waves (Si and Ai, i=1,2) propagating around an elastic aluminum cylindrical shell of various radius ratio b/a (a: outer radius and b: inner radius). The time-frequency of WignerVille and the proper modes theory are used in this study to compare and valid the frequencies values predicted by the ANFIS model. The useful data, of the cut-off frequencies (ka)c, are used to train and to test the performances of the model. These data are determined from the values calculated using the proper modes theory of resonances and also from those determined using the time-frequency images of Wigner-Ville. The material density, the radius ratio b/a, the index i of the symmetric and the antisymmetric circumferential waves, and the longitudinal and transverse velocities of the material constituting the tube, are selected as the input parameters of the ANFIS model. This technique is able to model and to predict the cut-off frequencies, of the symmetric and the anti-symmetric circumferential waves, with a high precision, based on different estimation errors such as mean relative error (MRE), mean absolute error (MAE) and standard error (SE). A good agreement is obtained between the output values predicted using the propose model and those computed by the proper modes theory. Keywords—ANFIS; time-frequency; SPWV; Acoustic scattering, acoustic circumferential waves; cut-off frequency;cylindrical shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

A Neuro-Fuzzy Model for a Dynamic Prediction of Milk Ultrafiltration Flux and Resistance

A neuro-fuzzy modeling tool (ANFIS) has been used to dynamically model cross flow ultrafiltration of milk. It aims to predict permeate flux and total hydraulic resistance as a function of transmembrane pressure, pH, temperature, fat, molecular weight cut off, and processing time. Dynamic modeling of ultrafiltration performance of colloidal systems (such as milk) is very important for design...

متن کامل

Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...

متن کامل

A Neuro-Fuzzy Computing Technique for

An Adaptative Neuro-Fuzzy Inference System (ANFIS) is developed to predict the acoustic form function (FF) for an infinite length cylindrical shell excited perpendicularly to its axis. The Wigner-Ville distribution (WVD) is used like a comparison tool between the calculated FF by the analytical method and that predicted by the neuro-fuzzy technique for a copper tube. During the application of t...

متن کامل

Potential Assessment of ANNs and Adaptative Neuro Fuzzy Inference systems (ANFIS) for Simulating Soil Temperature at diffrent Soil Profile Depths

Objective: Soil temperature serves as a key variable in hydrological investigations to determine soil moisture content as well as hydrological balance in watersheds. The ingoing research aims to shed lights on potential of artificial neural networks (ANNs) and Neuro-Fuzzy inference system (ANFIS) to simulate soil temperature at 5-100 cm depths. To satisfy this end, climatic and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013